Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 941
Filtrar
1.
Elife ; 122024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564479

RESUMO

Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline-deficient, high-fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Células Estreladas do Fígado , Fígado/metabolismo , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , RNA Interferente Pequeno/metabolismo
2.
J Physiol ; 602(7): 1313-1340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513062

RESUMO

High-intensity exercise stimulates glycolysis, subsequently leading to elevated lactate production within skeletal muscle. While lactate produced within the muscle is predominantly released into the circulation via the monocarboxylate transporter 4 (MCT4), recent research underscores lactate's function as an intercellular and intertissue signalling molecule. However, its specific intracellular roles within muscle cells remains less defined. In this study, our objective was to elucidate the effects of increased intramuscular lactate accumulation on skeletal muscle adaptation to training. To achieve this, we developed MCT4 knockout mice and confirmed that a lack of MCT4 indeed results in pronounced lactate accumulation in skeletal muscle during high-intensity exercise. A key finding was the significant enhancement in endurance exercise capacity at high intensities when MCT4 deficiency was paired with high-intensity interval training (HIIT). Furthermore, metabolic adaptations supportive of this enhanced exercise capacity were evident with the combination of MCT4 deficiency and HIIT. Specifically, we observed a substantial uptick in the activity of glycolytic enzymes, notably hexokinase, glycogen phosphorylase and pyruvate kinase. The mitochondria also exhibited heightened pyruvate oxidation capabilities, as evidenced by an increase in oxygen consumption when pyruvate served as the substrate. This mitochondrial adaptation was further substantiated by elevated pyruvate dehydrogenase activity, increased activity of isocitrate dehydrogenase - the rate-limiting enzyme in the TCA cycle - and enhanced function of cytochrome c oxidase, pivotal to the electron transport chain. Our findings provide new insights into the physiological consequences of lactate accumulation in skeletal muscle during high-intensity exercises, deepening our grasp of the molecular intricacies underpinning exercise adaptation. KEY POINTS: We pioneered a unique line of monocarboxylate transporter 4 (MCT4) knockout mice specifically tailored to the ICR strain, an optimal background for high-intensity exercise studies. A deficiency in MCT4 exacerbates the accumulation of lactate in skeletal muscle during high-intensity exercise. Pairing MCT4 deficiency with high-intensity interval training (HIIT) results in a synergistic boost in high-intensity exercise capacity, observable both at the organismal level (via a treadmill running test) and at the muscle tissue level (through an ex vivo muscle contractile function test). Coordinating MCT4 deficiency with HIIT enhances both the glycolytic enzyme activities and mitochondrial capacity to oxidize pyruvate.


Assuntos
Treinamento Intervalado de Alta Intensidade , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético , Animais , Camundongos , Lactatos , Camundongos Endogâmicos ICR , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Piruvatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo
3.
J Pediatr Endocrinol Metab ; 37(4): 371-374, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38345890

RESUMO

OBJECTIVES: To report an unusual case of MCT8 deficiency (Allan-Herndon-Dudley syndrome), an X-linked condition caused by pathogenic variants in the SLC16A2 gene. Defective transport of thyroid hormones (THs) in this condition leads to severe neurodevelopmental impairment in males, while heterozygous females are usually asymptomatic or have mild TH abnormalities. CASE PRESENTATION: A girl with profound developmental delay, epilepsy, primary amenorrhea, elevated T3, low T4 and free T4 levels was diagnosed with MCT8-deficiency at age 17 years, during evaluation for primary ovarian insufficiency (POI). Cytogenetic analysis demonstrated balanced t(X;16)(q13.2;q12.1) translocation with a breakpoint disrupting SLC16A2. X-chromosome inactivation studies revealed a skewed inactivation of the normal X chromosome. CONCLUSIONS: MCT8-deficiency can manifest clinically and phenotypically in women with SLC16A2 aberrations when nonrandom X inactivation occurs, while lack of X chromosome integrity due to translocation can cause POI.


Assuntos
Retardo Mental Ligado ao Cromossomo X , Insuficiência Ovariana Primária , Simportadores , Masculino , Adolescente , Humanos , Feminino , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/patologia , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Diagnóstico Tardio , Insuficiência Ovariana Primária/genética , Transportadores de Ácidos Monocarboxílicos/genética , Translocação Genética , Simportadores/genética
4.
JCI Insight ; 9(7)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376950

RESUMO

Patients with mutations in the thyroid hormone (TH) cell transporter monocarboxylate transporter 8 (MCT8) gene develop severe neuropsychomotor retardation known as Allan-Herndon-Dudley syndrome (AHDS). It is assumed that this is caused by a reduction in TH signaling in the developing brain during both intrauterine and postnatal developmental stages, and treatment remains understandably challenging. Given species differences in brain TH transporters and the limitations of studies in mice, we generated cerebral organoids (COs) using human induced pluripotent stem cells (iPSCs) from MCT8-deficient patients. MCT8-deficient COs exhibited (i) altered early neurodevelopment, resulting in smaller neural rosettes with thinner cortical units, (ii) impaired triiodothyronine (T3) transport in developing neural cells, as assessed through deiodinase-3-mediated T3 catabolism, (iii) reduced expression of genes involved in cerebral cortex development, and (iv) reduced T3 inducibility of TH-regulated genes. In contrast, the TH analogs 3,5-diiodothyropropionic acid and 3,3',5-triiodothyroacetic acid triggered normal responses (induction/repression of T3-responsive genes) in MCT8-deficient COs, constituting proof of concept that lack of T3 transport underlies the pathophysiology of AHDS and demonstrating the clinical potential for TH analogs to be used in treating patients with AHDS. MCT8-deficient COs represent a species-specific relevant preclinical model that can be utilized to screen drugs with potential benefits as personalized therapeutics for patients with AHDS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retardo Mental Ligado ao Cromossomo X , Atrofia Muscular , Animais , Humanos , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonia Muscular/genética , Hormônios Tireóideos
6.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396788

RESUMO

Innate immune cells, including macrophages, are functionally affected by thyroid hormone (TH). Macrophages can undergo phenotypical alterations, shifting between proinflammatory (M1) and immunomodulatory (M2) profiles. Cellular TH concentrations are, among others, determined by TH transporters. To study the effect of TH and TH transporters on macrophage polarization, specific proinflammatory and immunomodulatory markers were analyzed in bone marrow-derived macrophages (BMDMs) depleted of triiodothyronine (T3) and BMDMs with a knockout (KO) of Mct8 and Mct10 and a double KO (dKO) of Mct10/Mct8. Our findings show that T3 is important for M1 polarization, while a lack of T3 stimulates M2 polarization. Mct8 KO BMDMs are unaffected in their T3 responsiveness, but exhibit slight alterations in M2 polarization, while Mct10 KO BMDMs show reduced T3 responsiveness, but unaltered polarization markers. KO of both the Mct8 and Mct10 transporters decreased T3 availability and, contrary to the T3-depleted BMDMs, showed partially increased M1 markers and unaltered M2 markers. These data suggest a role for TH transporters besides transport of TH in BMDMs. This study highlights the complex role of TH transporters in macrophages and provides a new angle on the interaction between the endocrine and immune systems.


Assuntos
Macrófagos , Simportadores , Hormônios Tireóideos , Animais , Camundongos , Macrófagos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Tri-Iodotironina/farmacologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
7.
Mol Metab ; 81: 101900, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354856

RESUMO

The pyruvate transporter MPC1 (mitochondrial pyruvate carrier 1) acts as a tumour-suppressor, loss of which correlates with a pro-tumorigenic phenotype and poor survival in several tumour types. In high-grade serous ovarian cancers (HGSOC), patients display copy number loss of MPC1 in around 78% of cases and reduced MPC1 mRNA expression. To explore the metabolic effect of reduced expression, we demonstrate that depleting MPC1 in HGSOC cell lines drives expression of key proline biosynthetic genes; PYCR1, PYCR2 and PYCR3, and biosynthesis of proline. We show that altered proline metabolism underpins cancer cell proliferation, reactive oxygen species (ROS) production, and type I and type VI collagen formation in ovarian cancer cells. Furthermore, exploring The Cancer Genome Atlas, we discovered the PYCR3 isozyme to be highly expressed in a third of HGSOC patients, which was associated with more aggressive disease and diagnosis at a younger age. Taken together, our study highlights that targeting proline metabolism is a potential therapeutic avenue for the treatment of HGSOC.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Neoplasias Ovarianas , Feminino , Humanos , Proliferação de Células , Colágeno , Transportadores de Ácidos Monocarboxílicos/genética , Neoplasias Ovarianas/genética , Prolina
8.
Eur Thyroid J ; 13(2)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417253

RESUMO

Thyroid hormones play an important role during the development and functioning of the different sensory systems. In order to exert their actions, thyroid hormones need to access their target cells through transmembrane transporter proteins, among which the monocarboxylate transporter 8 (MCT8) stands out for its pathophysiological relevance. Mutations in the gene encoding for MCT8 lead to the Allan-Herndon-Dudley syndrome (AHDS), a rare disease characterised by severe neuromotor and cognitive impairments. The impact of MCT8 deficiency in the neurosensory capacity of AHDS patients is less clear, with only a few patients displaying visual and auditory impairments. In this review we aim to gather data from different animal models regarding thyroid hormone transport and action in the different neurosensory systems that could aid to identify potential neurosensorial alterations in MCT8-deficient patients.


Assuntos
Retardo Mental Ligado ao Cromossomo X , Atrofia Muscular , Hormônios Tireóideos , Animais , Humanos , Hormônios Tireóideos/metabolismo , Retardo Mental Ligado ao Cromossomo X/genética , Transporte Biológico , Hipotonia Muscular/genética , Transportadores de Ácidos Monocarboxílicos/genética
9.
Front Biosci (Landmark Ed) ; 29(1): 16, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38287802

RESUMO

BACKGROUND: The SLC5A8 gene is silenced in various types of cancer, including cervical cancer; we recently demonstrated that the SLC5A8 gene is also silenced in cervical cancer by hypermethylation of the CpG island in the gene promoter. This study aims to analyze whether SLC5A8 could be a tumor suppressor in cervical cancer. METHODS: After ectopic expressing SLC5A8 in the HeLa cell line, we evaluated its effects on cell behavior both in vitro and in vivo by Confocal immunofluorescence, cell proliferation, migration assays, and xenograft transplants. RESULTS: Overexpression of SLC5A8 in the HeLa cell line decreased its proliferation by arresting cancer cells in the G1 phase and inhibiting cellular migration. Furthermore, we observed that pyruvate increased the SLC5A8 effect, inducing S-phase arrest and inhibiting the entry into mitosis. SLC5A8 decreased tumor growth in xenograft transplants, significantly reducing the volume and tumor weight at 35 days of analysis. CONCLUSIONS: In summary, our results indicate that SLC5A8 has a role as a tumor suppressor in cervical cancer.


Assuntos
Transportadores de Ácidos Monocarboxílicos , Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , Genes Supressores de Tumor , Células HeLa , Transportadores de Ácidos Monocarboxílicos/genética , Ácido Pirúvico , Neoplasias do Colo do Útero/genética , Animais
10.
Mol Carcinog ; 63(2): 266-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846801

RESUMO

Helicobacter pylori induces DNA methylation in gastric mucosa, which links to gastric cancer (GC) risk. In contrast, CpG island methylator phenotype (CIMP) is defined as high levels of cancer-specific methylation and provides distinct molecular and clinicopathological features of GC. The association between those two types of methylation in GC remains unclear. We examined DNA methylation of well-validated H. pylori infection associated genes in GC and its adjacent mucosa and investigated its association with CIMP, various molecular subtypes and clinical features. We studied 50 candidate loci in 24 gastric samples to identify H. pylori infection associated genes. Identified loci were further examined in 624 gastric tissue from 217 primary GC, 217 adjacent mucosa, and 190 mucosae from cancer-free subjects. We identified five genes (IGF2, SLC16A2, SOX11, P2RX7, and MYOD1) as hypermethylated in H. pylori infected gastric mucosa. In non-neoplastic mucosa, methylation of H. pylori infection associated genes was higher in patients with GC than those without. In primary GC tissues, higher methylation of H. pylori infection associated genes correlated with CIMP-positive and its related features, such as MLH1 methylated cases. On the other hand, GC with lower methylation of these genes presented aggressive clinicopathological features including undifferentiated histopathology, advanced stage at diagnosis. H. pylori infection associated DNA methylation is correlated with CIMP, specific molecular and clinicopathological features in GC, supporting its utility as promising biomarker in this tumor type.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Simportadores , Humanos , Metilação de DNA , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Fenótipo , Ilhas de CpG/genética , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética
11.
Arch. argent. pediatr ; 121(6): e202202968, dic. 2023. tab
Artigo em Inglês, Espanhol | LILACS, BINACIS | ID: biblio-1518580

RESUMO

Los transportadores de monocarboxilatos (MCT) permiten el ingreso celular de hormonas tiroideas, especialmente en el sistema nervioso central (SNC), donde son indispensables para el neurodesarrollo. La deficiencia de MCT8 produce la combinación de hipotiroidismo en SNC e hipertiroidismo periférico, caracterizada por T3 elevada. El único tratamiento actualmente disponible es el ácido 3,3',5-triyodotiroacético (TRIAC), un análogo de hormonas tiroideas que tiene como objetivo mejorar la tirotoxicosis periférica y prevenir la progresión del deterioro neurológico. En el presente artículo, se evalúan las características clínicas, imagenológicas, bioquímicas y genéticas de 4 pacientes con deficiencia de MCT8 tratados con TRIAC hasta la fecha, las dosis utilizadas y la respuesta al tratamiento.


Monocarboxylate transporters (MCTs) allow the cellular entry of thyroid hormones, especially into the central nervous system (CNS), where they are crucial for neurodevelopment. MCT8 deficiency results in the combination of hypothyroidism in the CNS and peripheral hyperthyroidism, characterized by elevated T3 levels. The only treatment currently available is 3,3',5-triiodothyroacetic acid (TRIAC), a thyroid hormone analogue aimed at improving peripheral thyrotoxicosis and preventing the progression of neurological impairment. Here we assess the clinical, imaging, biochemical, and genetic characteristics of 4 patients with MCT8 deficiency who have received TRIAC to date, the doses used, and the response to treatment.


Assuntos
Humanos , Lactente , Criança , Simportadores/genética , Hormônios Tireóideos , Tri-Iodotironina , Transportadores de Ácidos Monocarboxílicos/genética
12.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139173

RESUMO

CD147/Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, is a multifunctional molecule with various binding partners. CD147 binds to monocarboxylate transporters (MCTs) and supports their expression on plasma membranes. MTC-1 and MCT-4 export the lactic acid that is converted from pyruvate in glycolysis to maintain the intracellular pH level and a stable metabolic state. Under physiological conditions, cellular energy production is induced by mitochondrial oxidative phosphorylation. Glycolysis usually occurs under anaerobic conditions, whereas cancer cells depend on glycolysis under aerobic conditions. T cells also require glycolysis for differentiation, proliferation, and activation. Human malignant melanoma cells expressed higher levels of MCT-1 and MCT-4, co-localized with CD147 on the plasma membrane, and showed an increased glycolysis rate compared to normal human melanocytes. CD147 silencing by siRNA abrogated MCT-1 and MCT-4 membrane expression and disrupted glycolysis, inhibiting cancer cell activity. Furthermore, CD147 is involved in psoriasis. MCT-1 was absent on CD4+ T cells in CD147-deficient mice. The naïve CD4+ T cells from CD147-deficient mice exhibited a low capacity to differentiate into Th17 cells. Imiquimod-induced skin inflammation was significantly milder in the CD147-deficient mice than in the wild-type mice. Overall, CD147/Basigin is involved in the development of malignant tumors and T-cell-mediated immunological disorders via glycolysis regulation.


Assuntos
Basigina , Neoplasias , Animais , Humanos , Camundongos , Basigina/genética , Basigina/metabolismo , Glicólise , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA Interferente Pequeno/metabolismo , Linfócitos T , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/metabolismo
13.
Stem Cell Res ; 73: 103256, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006677

RESUMO

The X-linked Allan-Herndon-Dudley syndrome (AHDS) is characterized by severely impaired psychomotor development and is caused by mutations in the SLC16A2 gene encoding the thyroid hormone transporter MCT8 (monocarboxylate transporter 8). By targeting exon 3 of SLC16A2 using CRISPR/Cas9 with single-stranded oligodeoxynucleotides as homology-directed repair templates, we introduced the AHDS patient missense variant G401R and a novel knock-out deletion variant (F400Sfs*17) into the male healthy donor hiPSC line BIHi001-B. We successfully generated cerebral organoids from these genome-edited lines, demonstrating the utility of the novel lines for modelling the effects of MCT8-deficency on human neurodevelopment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retardo Mental Ligado ao Cromossomo X , Simportadores , Humanos , Masculino , Hormônios Tireóideos , Mutação , Transportadores de Ácidos Monocarboxílicos/genética , Retardo Mental Ligado ao Cromossomo X/genética , Simportadores/genética
14.
BMC Pharmacol Toxicol ; 24(1): 58, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919807

RESUMO

BACKGROUND: The illicit use and abuse of gamma-hydroxybutyric acid (GHB) occurs due to its sedative/hypnotic and euphoric effects. Currently, there are no clinically available therapies to treat GHB overdose, and care focuses on symptom treatment until the drug is eliminated from the body. Proton- and sodium-dependent monocarboxylate transporters (MCTs (SLC16A) and SMCTs (SLC5A)) transport and mediate the renal clearance and distribution of GHB. Previously, it has been shown that MCT expression is regulated by sex hormones in the liver, skeletal muscle and Sertoli cells. The focus of the current study is to evaluate GHB toxicokinetics and renal monocarboxylate transporter expression over the estrus cycle in females, and in the absence of male and female sex hormones. METHODS: GHB toxicokinetics and renal transporter expression of MCT1, SMCT1 and CD147 were evaluated in females over the estrus cycle, and in ovariectomized (OVX) female, male and castrated (CST) male rats. GHB was administered iv bolus (600 and 1000 mg/kg) and plasma and urine samples were collected for six hours post-dose. GHB concentrations were quantified using a validated LC/MS/MS assay. Transporter mRNA and protein expression was quantified by qPCR and Western Blot. RESULTS: GHB renal clearance and AUC varied between sexes and over the estrus cycle in females with higher renal clearance and a lower AUC in proestrus females as compared to males (intact and CST), and OVX females. We demonstrated that renal MCT1 membrane expression varies over the estrus cycle, with the lowest expression observed in proestrus females, which is consistent with the observed changes in GHB renal clearance. CONCLUSIONS: Our results suggest that females may be less susceptible to GHB-induced toxicity due to decreased exposure resulting from increased renal clearance, as a result of decreased renal MCT1 expression.


Assuntos
Oxibato de Sódio , Ratos , Masculino , Feminino , Animais , Oxibato de Sódio/toxicidade , Oxibato de Sódio/farmacocinética , Ratos Sprague-Dawley , Toxicocinética , Espectrometria de Massas em Tandem , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hormônios Esteroides Gonadais
15.
Channels (Austin) ; 17(1): 2273008, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37934721

RESUMO

Monocarboxylate transporters (MCTs) play an immense role in metabolically active solid tumors by regulating concentration-dependent transport of different important monocarboxylates including pyruvate and lactate and are encoded by the SLC16A family of genes. Given the vast array of functions, these transporters play in oncogenesis, our objective was to look into the association of MCT1 (SLC16A1), MCT2 (SLC16A7), MCT3 (SLC16A8), and MCT4 (SLC16A3) with Epithelial ovarian cancer (EOC) pathophysiology by exploiting various publicly available databases and web resources. Few of the in silico findings were confirmed via in vitro experiments in EOC cell lines, SKOV3 and OAW-42. MCT1 and MCT4 were found to be upregulated at the mRNA level in OC tissues compared to normal. However, only higher level of MCT4 mRNA was found to be associated with poor patient survival. MCT4 was positively correlated with gene families responsible for invasion, migration, and immune modification, proving it to be one of the most important MCTs for therapeutic intervention. We compared the effects of MCT1/2 blocker SR13800 and a broad-spectrum MCT blocker α-Cyano Hydroxy Cinnamic Acid (α-CHCA) and discovered that α-CHCA has a greater effect on diminishing the invasive behavior of the cancer cells than MCT1/2 blocker SR13800. From our study, MCT4 has emerged as a prospective marker for predicting poor patient outcomes and a potential therapeutic target.


Assuntos
Proteínas de Membrana Transportadoras , Neoplasias Ovarianas , Feminino , Humanos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Estudos Prospectivos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Piruvatos/química , Piruvatos/metabolismo , Lactatos/química , Lactatos/metabolismo
16.
Clin Chim Acta ; 551: 117621, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37925810

RESUMO

BACKGROUND: Allan-Herndon-Dudley syndrome (MCT 8 deficiency) is an X-linked recessive condition caused by hemizygous pathogenic variants in SLC16A2 encoding the monocarboxylate transporter 8 (MCT8). Patients present with global developmental delay and neurological impairment, and abnormal serum thyroid function tests. The drug, 3,3',5 triiodothyroacetic acid (TRIAC), was recently demonstrated to improve the endocrinological profile. Improvement in diagnostic approach is key to earlier start of treatment. PATIENT FINDINGS: We described four Chinese patients with MCT8 deficiency undergoing different diagnostic odysseys. Their initial presentation included global developmental delay and dystonia. Patient 2 also had epilepsy. Patients 1 and 2 presented with two novel variants: (1)hemizygous NM_006517.4(SLC16A2):c.1170 + 2 T > A; p.(?), and (2)hemizygous NM_006517.4(SLC16A2):c.305dupT; p.(Val103GlyfsTer17) respectively. Patients 3 and 4 were biological brothers harboring hemizygous NM_006517.4(SLC16A2):c.305dupT; p.(Val103GlyfsTer17), which was first reported in 2004. We obtained the measurement of triiodothyronine (T3) and reverse T3 (rT3) from dried blood spot samples collected on Day 1 of life from Patient 1 and studied the biomarkers (rT3 and T3/rT3 ratio) proposed by Iwayama et al. for the detection of MCT8 deficiency at birth. Our data verified the significantly reduced rT3 level in Patient 1, compared with healthy newborns, although low T3 level and comparable T3/rT3 ratio with controls were detected. SUMMARY: Patients with MCT8 deficiency often undergo diagnostic odysseys. An early diagnosis could be missed by a normal newborn thyroid function screening result based on biochemical measurement of TSH and/or T4/fT4. Early detection of rT3 is key to improving current diagnostic approach. CONCLUSION: We recommend that full thyroid function profile (TSH, T4/fT4, T3/fT3, rT3) be considered early for all pediatric patients presenting with unexplained developmental delay and/or dystonia. The potential inclusion of rT3 measurement in newborn screening may prove promising.


Assuntos
Distonia , Simportadores , Recém-Nascido , Masculino , Humanos , Criança , Hong Kong , Triagem Neonatal , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética , Tireotropina
17.
Fluids Barriers CNS ; 20(1): 79, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924081

RESUMO

BACKGROUND: The monocarboxylate transporter 8 (MCT8) plays a vital role in maintaining brain thyroid hormone homeostasis. This transmembrane transporter is expressed at the brain barriers, as the blood-brain barrier (BBB), and in neural cells, being the sole known thyroid hormone-specific transporter to date. Inactivating mutations in the MCT8 gene (SLC16A2) cause the Allan-Herndon-Dudley Syndrome (AHDS) or MCT8 deficiency, a rare X-linked disease characterized by delayed neurodevelopment and severe psychomotor disorders. The underlying pathophysiological mechanisms of AHDS remain unclear, and no effective treatments are available for the neurological symptoms of the disease. METHODS: Neurovascular unit ultrastructure was studied by means of transmission electron microscopy. BBB permeability and integrity were evaluated by immunohistochemistry, non-permeable dye infiltration assays and histological staining techniques. Brain blood-vessel density was evaluated by immunofluorescence and magnetic resonance angiography. Finally, angiogenic-related factors expression was evaluated by qRT-PCR. The studies were carried out both in an MCT8 deficient subject and Mct8/Dio2KO mice, an AHDS murine model, and their respective controls. RESULTS: Ultrastructural analysis of the BBB of Mct8/Dio2KO mice revealed significant alterations in neurovascular unit integrity and increased transcytotic flux. We also found functional alterations in the BBB permeability, as shown by an increased presence of peripheral IgG, Sodium Fluorescein and Evans Blue, along with increased brain microhemorrhages. We also observed alterations in the angiogenic process, with reduced blood vessel density in adult mice brain and altered expression of angiogenesis-related factors during brain development. Similarly, AHDS human brain samples showed increased BBB permeability to IgG and decreased blood vessel density. CONCLUSIONS: These findings identify for the first time neurovascular alterations in the MCT8-deficient brain, including a disruption of the integrity of the BBB and alterations in the neurovascular unit ultrastructure as a new pathophysiological mechanism for AHDS. These results open a new field for potential therapeutic targets for the neurological symptoms of these patients and unveils magnetic resonance angiography as a new non-invasive in vivo technique for evaluating the progression of the disease.


Assuntos
Retardo Mental Ligado ao Cromossomo X , Simportadores , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Imunoglobulina G , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/patologia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Simportadores/genética , Simportadores/metabolismo , Simportadores/uso terapêutico , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/uso terapêutico
18.
Cells ; 12(20)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887331

RESUMO

Thyroid hormone (TH) transporter MCT8 deficiency causes severe locomotor disabilities likely due to insufficient TH transport across brain barriers and, consequently, compromised neural TH action. As an established animal model for this disease, Mct8/Oatp1c1 double knockout (DKO) mice exhibit strong central TH deprivation, locomotor impairments and similar histo-morphological features as seen in MCT8 patients. The pathways that cause these neuro-motor symptoms are poorly understood. In this paper, we performed proteome analysis of brain sections comprising cortical and striatal areas of 21-day-old WT and DKO mice. We detected over 2900 proteins by liquid chromatography mass spectrometry, 67 of which were significantly different between the genotypes. The comparison of the proteomic and published RNA-sequencing data showed a significant overlap between alterations in both datasets. In line with previous observations, DKO animals exhibited decreased myelin-associated protein expression and altered protein levels of well-established neuronal TH-regulated targets. As one intriguing new candidate, we unraveled and confirmed the reduced protein and mRNA expression of Pde10a, a striatal enzyme critically involved in dopamine receptor signaling, in DKO mice. As altered PDE10A activities are linked to dystonia, reduced basal ganglia PDE10A expression may represent a key pathogenic pathway underlying human MCT8 deficiency.


Assuntos
Proteoma , Simportadores , Animais , Humanos , Camundongos , Proteoma/metabolismo , Proteômica , Simportadores/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hormônios Tireóideos/metabolismo , Diester Fosfórico Hidrolases/metabolismo
19.
Biochim Biophys Acta Gen Subj ; 1867(12): 130492, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871770

RESUMO

BACKGROUND: The mitochondrial pyruvate carrier (MPC) is a protein complex composed of two subunits, MPC1 and MPC2. This carrier is at the interface between glycolysis and mitochondrial metabolism and plays an essential role in hepatic glucose production. METHODS: Here we describe an in vitro screen for small molecule inhibitors of the MPC using a strain of Lactococcus lactis that has been engineered to co-express the two subunits of the human MPC and is able to import exogenous 14C-pyruvate. We then tested the top candidates for potential antidiabetic effects through the repression of gluconeogenesis. RESULTS: By screening the Prestwick compound library of 1'200 drugs approved by the Food and Drug Administration for inhibitors of pyruvate uptake, twelve hit molecules were identified. In a secondary screen, the most potent inhibitors were found to inhibit pyruvate-driven oxygen consumption in mouse C2C12 muscle cells. Assessment of gluconeogenesis showed that Zaprinast, as well as the established MPC inhibitor UK5099, inhibited in vitro and in vivo hepatic glucose production. However, when tested acutely in mice without the administration of gluconeogenic substrates, MPC inhibitors raised blood glucose levels, pointing to liver-independent effects. Furthermore, chronic treatment with Zaprinast failed to correct hyperglycemia in both lean and obese diabetic mouse models. CONCLUSIONS: New MPC inhibitors have been identified, showing inhibitory effects on hepatic glucose production. GENERAL SIGNIFICANCE: For potential antidiabetic applications, MPC inhibitors should target the liver without undesired inhibition of mitochondrial pyruvate metabolism in the skeletal muscles or pancreatic beta-cells in order to avoid dual effects on glycemia.


Assuntos
Diabetes Mellitus , Glucose , Estados Unidos , Humanos , Camundongos , Animais , Glucose/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fígado/metabolismo , Diabetes Mellitus/metabolismo , Hipoglicemiantes/farmacologia , Piruvatos/metabolismo , Piruvatos/farmacologia
20.
Cell Death Dis ; 14(10): 666, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816756

RESUMO

Tumour cells mainly generate energy from glycolysis, which is commonly coupled with lactate production even under normoxic conditions. As a critical lactate transporter, monocarboxylate transporter 4 (MCT4) is highly expressed in glycolytic tissues, such as muscles and tumours. Overexpression of MCT4 is associated with poor prognosis for patients with various tumours. However, how MCT4 function is post-translationally regulated remains largely unknown. Taking advantage of human lung adenocarcinoma (LUAD) cells, this study revealed that MCT4 can be polyubiquitylated in a nonproteolytic manner by SYVN1 E3 ubiquitin ligase. The polyubiquitylation facilitates the localization of MCT4 into the plasma membrane, which improves lactate export by MCT4; in accordance, metabolism characterized by reduced glycolysis and lactate production is effectively reprogrammed by SYVN1 knockdown, which can be reversed by MCT4 overexpression. Biologically, SYVN1 knockdown successfully compromises cell proliferation and tumour xenograft growth in mouse models that can be partially rescued by overexpression of MCT4. Clinicopathologically, overexpression of SYVN1 is associated with poor prognosis in patients with LUAD, highlighting the importance of the SYVN1-MCT4 axis, which performs metabolic reprogramming during the progression of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Membrana Celular/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...